
Jan Bramkamp, 2020-05-08

Forth on microcontrollers
From the minicomputer to the microcontroller

What defines Forth
Extending the compiler

• interactive development

• bottom up programming

• lots of refactoring

• grow the language to fit your problem

• shorter programs

• avoid overgeneralisation

Hardware requirements
 The Agony of Choice

• required:

• a MCU board

• a compatible Programmer/Debugger

• a compatible USB<->RS232 converter

• Jump wires

• really nice to have: logic analyzer, multimeter

As cheap as possible
Some corners were cut

• Board: "STM32F103" blue pill board

• 72 MHz CPU, 20 kiB SRAM, 64 kiB flash (often 128 kiB)

• Programmer/Debugger: STLINK v2 clone

• Serial converter: 3.3V FT232 module (optional with swd2)

• Logic analyser: "the 10€ 8ch 24MHz logic analyzer"® (Cypress FX2 based)

• Cheap "single use" jump wires

• A multimeter for anything analog

Raspberry Pico

• 133 MHz (dual core)

• 256kiB SRAM

• 2MiB flash

• USB bootloader

• interesting peripherals

• useable as debugger/programmer

STM32F407
ST Discovery, AliExpress COM board, black board, diymore

Nicer hardware
 you get what you pay for (unless you're getting ripped off)

• easy to get: ST Nucleo boards, ST Discovery boards

• specialised boards:

• CAN bus, Ethernet, (multiple) USB ports, level shifters

• motor drivers, displays

• Different vendors

• Nordic Semi: low power, wireless communication

• TI: up to 1GHz ARM "micro"controller

Your time is valuable!

DEMO 1 (first steps)

Installation
On most STM32 boards

• st-flash erase

• st-flash write $KERNEL.bin 0x08000000

• Connect to UART with 115200 8n1 (at 3.3V, but often 5V tolerant)

Development Environment
• $EDITOR

• make

• build, erase, flash

• console upload

• line delay

• fast serial

• tmux + swd2

DEMO 2 (LEDs)

Mecrisp Stellaris
How much compiler can you fit in 20kiB

• Written in ARM Thumb Assembler by Matthias Koch

• Runs on the target MCU

• Optimising native code compiler

• Constant folding

• Opcoding

• Inlining

• Register Allocation

Interfacing with peripherals
Avoid metal arithmetic and typing from data-sheets

• svd2forth

• register addresses

• bitfields

• .equ

• The hardware

• 8 red LEDs

• 4 red switches

• 4 x 4 matrix keypad

• The software

• debounce buttons

• control LEDs

DEMO 3

Other Forth implementations
If you know one Forth, you know ONE Forth

• Gforth: fully featured Forth system for *nix

• zeptoforth: an embedded Forth system just for STM32F4 and L4

• FIG Forth: old, but portable

• AmForth: 16 bit Forth for AVR

• muforth: very portable, uses a meta compiler to bootstrap

• If it exists someone has probably written a Forth for it

Forth on a minicomputer (1/2)
How it all started

• Assembler: painful and low productivity

• FORTRAN, COBOL:

• requires access to a large system

• generated large code

• unsuitable for direct hardware access

• BASIC: slow, not realtime capable

Forth on a minicomputer (2/2)
How it all started

• Forth:

• fast enough

• realtime capable

• easy enough to use

• self hosted

• multitasking and multiuser support

• can interface with specialised peripherals

Forth on earlier microcontrollers
How to conquer hostile systems

• Multiple address spaces

• Read only code memory

• Different data and address width

• Very small memories

Forth implementation strategies
Looking back where we came from

• Native code

• Optimising

• Subroutine threading

• Threading

• Direct Threading

• Indirect Threading

• Token Threading

Contact information

• Join us on #mecrisp in freenode

• Visit the Mecrisp Stellaris Unofficial UserDoc

• My code is on GitHub

https://mecrisp-stellaris-folkdoc.sourceforge.io/index.html
https://github.com/Crest/

