

# PROJECT WHIRLWIND

Angelo Papenhoff/aap aap@papnet.eu

#### Computers in the 1940s

- human computers: lady at a desk
- punch card equipment: accounting &c.
- differential analyzers: solve differential equations mechanically
- electromechanical (relay) digital computers:
  - Zuse Z3
  - Harvard Mark I (essentially Charles Babbage's Analytical Engine)
  - IBM SSEC (IBM's successor to Mark I)
- electronic (vacuum tube) digital computers:
  - Colossus (classified until 70s, irrelevant to the field)
  - ENIAC (built to compute ballistic tables)
  - EDVAC (successor to ENIAC, the von Neumann computer)
  - EDSAC (inspired by EDVAC)
  - IAS Computer (roughly contemporary with Whirlwind)
  - but: not even finished when Project Whirlwind starts

### Computers in the 1940s

- how to steer the calculation?
  - hardwired (analog computers, ENIAC initially)
  - coded program from cards/tape (electromechanical computers)
  - coded program in storage (electronic computers, ENIAC later)
- storage/memory technology
  - only registers
  - delay line (EDVAC, EDSAC)
  - storage tubes (Manchester Baby, 1948, IAS machine)

**...** 

- serial vs. parallel: mostly tied to storage technology
- number base
  - decimal (ENIAC, Mark I, SSEC)
  - binary (Z3, EDVAC, EDSAC, IAS machine)
- number of digits
  - Z3: 22 binary digits, floating point(!)
  - usually: ~10-12 decimal digits or binary equivalent (30-40)

## Pre-history of Project Whirlwind

- 1943/4
- Problem: training flight crews on warcraft costs too much time and money
- Solution: ground-anchored flight trainers
- flight trainers went from pneumatic to electric (analog)
- But: new trainer for every aircraft
- Captain Luis de Florez (MIT):
- Airplane Stability and Control Analyzer (ACSA): universal flight trainer that can be configured to simulate various airplanes
- flight simulators had been built at Bell Labs
- ACSA goes to MIT's Servomechanisms Lab (Gordon Brown)

- 1944/5
- end of 1944: preliminary study of the analyzer to determine feasibility
- cockpit + analog computer (mechanical or electrical)
- Jay Forrester becomes director of the project and brings in Robert Everett
- study existing flight trainers and physics behind them
- at least 47 equations of 53 variables
- analog computer: electromechanical differential analyzer
- turns out to be more complex and difficult than anticipated
- Forrester learns about digital computers from Perry Crawford in late summer of '45

### **Digital computers**

- End of '45: explore digital approach to aircraft analyzer's problems
- has to be electronic to be fast
- binary number system to be preferred
- rewards: more reliable, higher accuracy, lower cost, smaller size, more flexible, application to other problems than aircraft analysis
- possible military applications:
  - aircraft stability and control
  - automatic radar tracking and fire control
  - stability and trajectories of guided missiles
  - study of aerial and submarine torpedos
  - servomechanisms systems
  - stability and control characteristics of surface ships
- early '46: Project Whirlwind
- Phase I: construct small digital computer [...]
- Phase II: build aircraft analyzer based on Phase I

### Digital computer

- investigate:
  - block diagrams
  - computing circuits
  - mathematics
  - mechanical questions, including cockpit
  - mercury delay lines
  - storage tube research
  - other electronic problems
- serial or parallel?
- delay line or storage tube memory?
- how many bits?

• ...

- sept. 1947: Whirlwind I Computer Block Diagrams (R-127)
- late 1948: no more Phase II, cockpit scrapped
- 5-digit multiplier built to test circuitry and reliability











- Project is in trouble 1946-1950
- $\blacksquare$  "peace broke out"  $\rightarrow$  bad times for funding of military projects
- what is the purpose of Whirlwind?
- way too expensive, and for what?
- ONR complained about lack of mathematical insight
- ONR didn't understand computer engineering
- Air Force wants air defense system, saves the project

## Whirlwind in R-127

- Whirlwind I (prototype for Whirlwind II):
  - parallel
  - one's complement
  - 16 binary digits, fixed point (-1.0; 1.0), scale manually
  - up to 32 orders (instructions), 15 specified
  - up to 2048 words of electrostatic storage
  - 1 megacycle (Mhz), arithmetic faster
- Whirlwind II:
  - bigger numbers (40-46 digits)
  - more storage (640,000 digits = 14,000 16,000 words)
  - probably two orders per word (like IAS machine)
  - same speed
  - reality: plans changed, WW II became AN/FSQ-7
- no discussion of ES storage or IO equipment
- instead, test storage: 5 flip-flop words, 27 toggle-switch words

#### Orders in 1947

5 bits order, 11 bits address ca - clear and add - AC := Mem[addr] ad - add - AC := AC + Mem[addr] ■ cs - clear and subtract - AC := -Mem[addr] su - subtract - AC := AC - Mem[addr] mh - multiply and hold - AC,BR := AC \* Mem[addr] mr - multiply and round off - AC := round(AC \* Mem[addr]) dv - divide - BR := AC / Mem[addr] sr - shift right - AC,BR := AC,BR » n sl - shift left - AC,BR := AC,BR « n sp - subprogram - PC := addr ■ cp - conditional subprogram - if AC > 0: PC := addr (later: <) ■ ts - transfer to storage - Mem[addr] := AC td - transfer digits - Mem[addr] := AC (only address portion) sa - special add - like ad, but remember overflow sd - store and display - like ts, but display on scope (testing only)















#### Whirlwind I block diagram



- point-off control added (normalize floating point numbers, sf)
- timing elements added and changed
- registers unified (AR and PR, BR and IO, CHECK and COMPARISON)
- matrices changed and combined
- sp now remembers return address in AR! ta added, most likely
- ao (add one) added
- sl\* sr\* proposed

- IO orders explained and described
- first program runs on August 9th
- "the computer using test storage is essentially complete" (sept)
- solve and display differential equation on scope
- more orders proposed: qc (ck), qd/qh (display), qe (ex)



| FILTER                                               |                                                  | FUSE                                                                    |                                                      | FILTER                                    |                                                       |                                                                                        |
|------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|
| DELAY LINE<br>AMPLIFIER<br># 6                       | 105<br>OPERATION<br>MATRIX                       | FILAMENT<br>TRANSFORMER<br>PANEL "I                                     | II2<br>RESTORER<br>PULSE<br>GENERATOR                | CLOCK<br>PULSE<br>CONTROL<br>DELAY        | READ IN<br>INTERLOCK                                  | 305<br>STEP-COUNTER<br>OUTPUT<br>(SCO)                                                 |
| CONTROL<br>SWITCH<br>OUTPUT<br>(CSO)                 | DRIVERS<br>(OMD-1)                               | IO5<br>CONTROL<br>PULSE<br>OUTPUT<br>(CPO-I)                            | REGISTER<br>DRIVER<br>TYPE I<br># 17                 | III<br>SYNCHRONIZER<br>I<br>(SYN)         | SYNCHRONIZER<br>II<br>(SYN II)                        |                                                                                        |
| IO4<br>CONTROL<br>SWITCH<br>MATRIX<br>(CSM)          | 105<br>OPERATION<br>MATRIX<br>DRIVERS<br>(OMD-2) | IO5<br>OPERATION<br>MATRIX<br>(OM)                                      | IO6<br>TIME-PULSE<br>DISTRIBUTOR<br>OUTPUT<br>(TPDO) | 109<br>CLOCK<br>PULSE<br>CONTROL<br>(CPC) | 308<br>DIVIDE<br>CONTROL<br>(DV)<br>DC IO<br>REGISTER | 305<br>STEP<br>COUNTER<br>(SC-I)                                                       |
| 104<br>CONTROL<br>SWITCH<br>SWITCH<br>PANEL<br>(CSS) | IO5<br>OPERATION<br>MATRIX<br>DRIVERS<br>(OMD-3) | IO5<br>CONTROL<br>PULSE<br>OUTPUT<br>(CPO-2)<br>FILAMENT<br>FRANSFORMER | IO6<br>TIME-PULSE<br>DISTRIBUTOR<br>COUNTER          | IIO<br>FREQUENCY<br>DIVIDER<br>(FDV)      | 306 8 307<br>MULTIPLY<br>SHIFT<br>CONTROL<br>(MS)     | RESTART<br>INTERLOCK<br># 22<br>RESTART<br>SYNCHRONIZER<br># 22<br>SW TO PB<br>CUAR SE |
| CONTROL <sup>1</sup><br>SWITCH<br>DRIVER<br>(CSD)    |                                                  | PANEL*2<br>FUSE<br>PANEL*2                                              | (TPDC)<br>PULSE GEN.<br>SYNCHRONIZER                 | IOI<br>PULSE<br>GENERATOR<br>(PG)         |                                                       | SYNCHAONIZER<br># 17<br>SW TO PB<br>FINE DELAY<br>SYNCHRONIZER                         |
| C7                                                   | C8                                               | C9 -2 CII                                                               | C12                                                  | CI3                                       | C14                                                   | CI5                                                                                    |



| STANDARDIZER<br>AMPLIFIER<br>(SA-4)          | BUS DRIVER<br>(BD)                     | BUS DRIVER<br>(BD)         |
|----------------------------------------------|----------------------------------------|----------------------------|
| ARITHMETIC<br>ELEMENT<br>DRIVER I<br>(AED-1) | 103<br>PROGRAM<br>REGISTER<br>(PR)     | 103<br>PRCGRAM<br>REGISTER |
| ARITHMETIC<br>ELEMENT<br>DRIVER 1<br>(AED-2) | IO2<br>PROGRAM<br>COUNTER<br>(PC)      | PROJRAM<br>COUNTER<br>(PC) |
| ARITHMETIC<br>ELEMENT<br>DRIVER I<br>(AED-3) | 303<br>B-REGISTER<br>(BR)              | 305<br>B-REGISTER<br>(BR)  |
| ARITHMETIC<br>ELEMENT<br>DRIVER I<br>(AED-4) |                                        |                            |
| ARITHMETIC<br>ELEMENT<br>DRIVER I<br>(AED-5) | 302<br>ACCUMULATOR<br>(AC)             | 302<br>ACCUNULATOR<br>(AC) |
| ARITHMETIC<br>ELEMENT<br>DRIVERI<br>(AED-G)  | 301<br>A-REGISTER<br>(AR)              | 30'<br>A-REGISTER<br>(AR)  |
| ARITHMETIC<br>ELEMENT<br>DRIVER I<br>(AED-7) | 601<br>CHECK<br>REGISTER<br>(CR-(9-15) |                            |
| AD                                           | A84414                                 | AI5                        |

- block diagrams in R-177
- PR removed for testing ES. AR taking its job temporarily
- qc/ck made canonical, more orders proposed
- IO system being integrated into WW
- work on magnetic core storage begins
- electrostatic storage integrated into WW
- first program runs from ES
- SRC (shift round-off control) proposed for sl\* sr\*

- old IO system not flexible, new IO system considered
- first messages printed on flexowriter: "all ok will write more later love, WWI"
- SRC working
- Whirlwind ran reliably for a few hours



| HV                             |             | FILTER                               | 108<br>STORAGE                      | FILTER                                | FILAMENT<br>TRANSFORMED<br>PANEL | FILTER                           |                                                              | FILAMENT<br>TRANSFORMER<br>PANEL |                  |
|--------------------------------|-------------|--------------------------------------|-------------------------------------|---------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------|----------------------------------|------------------|
| LV FLOATING                    | 500V        | 835<br>READ-GATE                     | CONTROL<br>(SSC)                    | B 35                                  | 833<br>SIGNAI-PLATE              | ESD<br>GATE PANEL<br>(ESDGP-V)   | ESD<br>GATE PANEL<br>(ESDGP-H)                               | 833<br>SKNN-PLATE                |                  |
| POWER<br>SUPPLY<br>(LVFP)      | (PSR)<br>5A | (RGG)(B)                             | DELAY LINE<br>AMPLIFIER             | HOLDING GATE<br>GENERATOR<br>(HGG)(B) | DRIVER<br>(SPD)-1                | BEO                              |                                                              | DRIVER<br>(SPD)-I                |                  |
| HV<br>PROTECTIVE<br>CIRCUIT    |             | STANDARDIZER<br>AMPLIFIER<br>(SA-7)  |                                     | STANDARDIZER<br>AMPLIFIER             | 832                              | DEFLECTION                       | 1                                                            | 832                              | 11               |
| HOLDING<br>GUN                 | ES POWER    |                                      | 812<br>ES                           | (SA-3)                                | OUTPUT<br>(ESTO)                 | ESD<br>PROTECTIVE                | ESD<br>PROTECTIVE                                            | OUTPUT<br>(ESTQ)                 | a ha             |
| SUPPLY<br>(HGA)                | CONTROL     | AMPLIFIER<br>(SA-6)                  | DISTRIBUTOR                         | 811<br>WRITE                          |                                  | CIRCUIT                          | CIRCUIT                                                      |                                  |                  |
| LV FLOATING<br>POWER<br>SUPPLY |             | STANDARDIZER                         | (ESPD-1)                            | TIMER<br>(WRT)                        |                                  |                                  | an a                     |                                  |                  |
| LV.FLOATING<br>POWER<br>SUPPLY |             | (SA-5)                               | STANDARDIZER                        | 820<br>ESD                            | 831 831<br>ST ST<br>MOUNT MOUN   | 820<br>ESD                       | 820<br>ESD                                                   | 831 831<br>ST ST<br>MOUNT MOUNT  | SAME<br>AS<br>EO |
| (LVFP)<br>LV FLOATING<br>POWER |             | ES<br>CONTROL<br>COUNTER<br>(ESCC-I) | (5A-I)                              | SELECTOR<br>(ESDBS)                   | BANKBBANKA<br>STM BISTMA         | ESDD-V)                          | (ESDD-H)                                                     | BANKBBANKA<br>(STM-B(STM-A)      |                  |
| (LVFP)                         |             | 811<br>ES                            | STANDARDIZER<br>AMPLIFIER<br>(SA-2) | BI3<br>ES TD<br>SELECTOR              |                                  | -/                               | TRANSLUSSION<br>TRANSLUSSION<br>LANE END COMMETON<br>A SHEEL | 7                                | 1                |
| SUPPLY<br>(LVFP)               | 1.2         | COUNTER<br>(ESCC-2)                  |                                     | (TDS)                                 | 834                              | 10 Percent                       |                                                              | 834                              |                  |
| ну                             |             | ES<br>CONTROL<br>COUNTER             | 812<br>ES<br>PULSE                  | 835<br>HOLDING<br>GATE                | GUN<br>DRIVER<br>(G D)-1         | 820<br>ESD<br>OUTPUT<br>(ESDO-V) | 820<br>ESD<br>OUTPUT<br>(ESDO-H)                             | GUN<br>DRIVER<br>(G D)-1         |                  |
| CATHODE<br>SUPPLY<br>(HVC)     |             | 811<br>ES                            | DISTRIBUTOR<br>"2<br>(ESPD-2)       | (HGG)(A)<br>835                       | 834<br>GUN                       | ESD<br>MONITOR<br>(ESDM)         | T.V.<br>SWEEP<br>GENERATOR                                   | 834<br>GUN                       |                  |
|                                |             | COUNTER<br>(ESCC-4)                  |                                     | GENERATOR<br>(RGG)(A)                 | (G D)-II                         |                                  |                                                              | (GD)-T                           |                  |
| EXI                            | EX2         | I EX3                                | EX4                                 | EX5                                   | EX6                              | I EX7                            | IEX8                                                         | EO                               | EIXE7            |

- no scans of bi-weekly reports :(
- work on IO system and ES continues
- Kodak-Eastman film units ditched

**...** 

- ql/cl (cycle) discussed
- qe/ex made canonical
- 7-seg display constructed
- new IO system implemented
- PAR added, PR removed
- Memory Test Computer (aka WWIA, aka WWI½):
  - explore circuitry for WWII
  - test and bring up Magnetic Core Storage
  - various block diagrams and order codes discussed
  - final order code almost identical to Whirlwind I
  - construction much simpler by using test equipment
  - built by Ken Olsen (DEC) and Wesley Clark (TX-2, LINC)

#### MTC:

- registers tested calculates and plots sines and cosines (Minsky circle?)
- MTC and core memory are working
- first bank of Core connected to Whirlwind
- second bank of Core connected to Whirlwind
- WWI now essentially in its final form





- punch tape
- displays
- light guns
- flexowriters
- drum
- magnetic tape
- clock

# Whirlwind's legacy

#### new paradigm of computing:

- real-time
- interactive
- computer part of a system, not merely a calculator
- reliable
- $\blacksquare \rightarrow beginning of the MIT tradition of computing$
- $\blacksquare \rightarrow \mathsf{DEC} \text{ minicomputers}$
- the first microcontroller?
- Core Memory, dominant type of memory for 2 decades
- WW II (aka AN/FSQ-7)
  - center piece of SAGE air defense system (22 SAGE sites)
  - built by IBM
  - IBM seriously enters the computer business
  - looks great in movies



#### Whirlwind I summary

|       | INSTRUCTION |     | AC                  | BR                            | AR      | SAM         | C(x)    |                 |
|-------|-------------|-----|---------------------|-------------------------------|---------|-------------|---------|-----------------|
| 00000 |             | SI  | SELECT IO UNIT      |                               |         |             |         |                 |
| 00001 |             |     | ILLEGAL             |                               |         |             |         |                 |
| 00010 |             | BI  | BLOCK IN            | x + n                         |         | ×           |         | first word      |
| 00011 |             | RD  | READ                | IOR                           |         | IOR         |         |                 |
| 00100 |             | BO  | BLOCK OUT           | x + n                         |         | ×           |         |                 |
| 00101 |             | RC  | RECORD              |                               |         |             |         |                 |
| 00110 |             | SD  | SUM OF DIGITS       | AC V C(x)                     |         | C(x)        | 0       |                 |
| 00111 |             | CF  | CHANGE FIELDS       |                               |         |             |         |                 |
| 01000 |             | TS  | TRANSFER TO STORAGE |                               |         |             |         | AC              |
| 01001 |             | TD  | TRANSFER DIGITS     |                               |         |             |         | C(x)0.4, AC5.15 |
| 01010 |             | TA  | TRANSFER ADDRESS    |                               |         |             |         | C(x)0.4, AR5.15 |
| 01011 |             | CK  | CHECK               |                               |         |             |         |                 |
| 01100 |             | AB  | ADD BR              | BR + C(x)                     |         | C(x)        | 0       | BR + C(x)       |
| 01101 |             | EX  | EXCHANGE            | C(x)                          |         | C(x)        |         | AC              |
| 01110 |             | CP  | CONDITIONAL SP      |                               |         | y+1         |         |                 |
| 01111 |             | SP  | SUBPROGRAM          |                               |         | y+1         |         |                 |
| 10000 |             | CA  | CLEAR, ADD          | C(x) + SAM                    | 0       | C(x)        | 0       |                 |
| 10001 |             | CS  | CLEAR, SUBTRACT     | -C(x) + SAM                   | 0       | C(x)        | 0       |                 |
| 10010 |             | AD  | ADD                 | AC + C(x)                     |         | C(x)        | 0       |                 |
| 10011 |             | SU  | SUBTRACT            | AC – C(x)                     |         | C(x)        | 0       |                 |
| 10100 |             | CM  | CLEAR, ADD MAG.     | C(x) +SAM                     | 0       | C(x)        | 0       |                 |
| 10101 |             | SA  | SPECIAL ADD         | AC + C(x)                     |         | C(x)        | ±1 or 0 |                 |
| 10110 |             | AO  | ADD ONE             | C(x) + 1                      |         | C(x)        | 0       | C(x) + 1        |
| 10111 |             | DM  | DIFFERENCE OF MAG.  | AC - C(x)                     | AC      | C(x)        | 0       |                 |
| 11000 |             | MR  | MULTIPLY, ROUND     | $(AC \times C(x))_{LT} + r$   | 0       | C(x)        | 0       |                 |
| 11001 |             | MH  | MULTIPLY, HOLD      | AC × C(x)                     | ←       | C(x)        | 0       |                 |
| 11010 |             | DV  | DIVIDE              | ±0                            | AC/C(x) | C(x)        | 0       |                 |
| 11011 | 0           | SLR | SHIFT LEFT, ROUND   | (AC:BR « n) <sub>it</sub> + r | 0       |             | 0       |                 |
| 11011 | 1           | SLH | SHIFT LEFT, HOLD    | AC:BR « n                     | ←       |             | 0       |                 |
| 11100 | 0           | SRR | SHIFT RIGHT, ROUND  | (AC:BR » n) <sub>LT</sub> + r | 0       |             | 0       |                 |
| 11100 | 1           | SRH | SHIFT RIGHT, HOLD   | AC:BR » n                     | ←       |             | 0       |                 |
| 11101 |             | SF  | SCALE FACTOR        | AC:BR « n                     | ←       | n           | 0       | n               |
| 11110 | 0           | CLC | CYCLE LEFT, CLEAR   | (AC:BR rot n) <sub>LT</sub>   | 0       |             |         |                 |
| 11110 | 1           | CLH | CYCLE LEFT, HOLD    | AC:BR rot n                   | ←       |             |         |                 |
| 11111 |             | MD  | MULTIPLY DIGITS     | AC A C(x)                     |         | -(final AC) |         |                 |